CHEM1612 Problem Sheet 4 (Week 4)

Work through the ChemCAL module "Chemical Equilibrium"

1. Ammonium carbamate $\left(\mathrm{NH}_{2} \mathrm{CO}_{2} \mathrm{NH}_{4}\right)$ is a salt of carbamic acid that is found in the blood and urine of mammals. At $250^{\circ} \mathrm{C}$, based on a standard state of $1 \mathrm{M}, K_{\mathrm{c}}=1.58 \times$ 10^{-8} for the following equilibrium:

$$
\mathrm{NH}_{2} \mathrm{CO}_{2} \mathrm{NH}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

If 7.80 g of $\mathrm{NH}_{2} \mathrm{CO}_{2} \mathrm{NH}_{4}$ is introduced into a 0.500 L evacuated container, what is the total pressure inside the container at equilibrium at $250^{\circ} \mathrm{C}$?
2. Water is oxidized to give hydrogen peroxide according to the reaction below.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})
$$

(a) Using the data below, calculate ΔG° at 600 K for this reaction.

$$
\begin{array}{ll}
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) & K_{\mathrm{p}}=2.3 \times 10^{6} \text { at } 600 \mathrm{~K} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & K_{\mathrm{p}}=1.8 \times 10^{37} \text { at } 600 \mathrm{~K}
\end{array}
$$

Both values of K_{p} are based on a standard state of $1 \times 10^{5} \mathrm{~Pa}$.
(b) Calculate the equilibrium constant K_{c} for the reaction.
(c) At 600 K , the entropy change, ΔS°, for the reaction is $+60 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Using this value and the value for ΔG° from (a), calculate the enthalpy change, ΔH°, at 600 K .
(d) What is the effect on $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ if the system is subjected to the following changes:
(i) The volume of the container is decreased
(ii) The temperature is increased
(iii) A solid catalyst is added at constant temperature and volume.
3. The equilibrium constant, K_{p}, for the reaction below is 11.5 at 600 K based on a standard state of $1 \times 10^{5} \mathrm{~Pa}$.
$\mathrm{PCl}_{5}(\mathrm{~g}) \quad \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
2.450 g of PCl_{5} is placed in an evacuated 500 mL bulb, which is heated to 600 K .
(a) What would be the initial pressure of $\mathrm{PCl}_{5}(\mathrm{~g})$ before it dissociates?
(b) What is the partial pressure of $\mathrm{PCl}_{5}(\mathrm{~g})$ at equilibrium?
(c) What is the total pressure in the bulb at equilibrium?
(d) What is the degree of dissociation of $\mathrm{PCl}_{5}(\mathrm{~g})$ at equilibrium?

Hint for part (b) As K_{p} is not very small, you cannot assume that the amount of product formed is small compared to the amount of starting material. You will need to solve the quadratic formula.

