CHEM1612 Problem Sheet 4 (Week 4)

Work through the ChemCAL module "Chemical Equilibrium"

1. Ammonium carbamate (NH₂CO₂NH₄) is a salt of carbamic acid that is found in the blood and urine of mammals. At 250 °C, based on a standard state of 1 M, $K_c = 1.58 \times 10^{-8}$ for the following equilibrium:

$$NH_2CO_2NH_4(s)$$
 \rightleftharpoons $2NH_3(g) + CO_2(g)$

If 7.80 g of NH₂CO₂NH₄ is introduced into a 0.500 L evacuated container, what is the total pressure inside the container at equilibrium at 250 °C?

2. Water is oxidized to give hydrogen peroxide according to the reaction below.

$$H_2O(g) + \frac{1}{2}O_2(g) \iff H_2O_2(g)$$

(a) Using the data below, calculate ΔG° at 600 K for this reaction.

$$H_2(g) + O_2(g)$$
 \longrightarrow $H_2O_2(g)$ $K_p = 2.3 \times 10^6$ at 600 K
 $2H_2(g) + O_2(g)$ \longrightarrow $2H_2O(g)$ $K_p = 1.8 \times 10^{37}$ at 600 K
 Both values of K_p are based on a standard state of 1×10^5 Pa.

- (b) Calculate the equilibrium constant K_c for the reaction.
- (c) At 600 K, the entropy change, ΔS° , for the reaction is +60 J K⁻¹ mol⁻¹. Using this value and the value for ΔG° from (a), calculate the enthalpy change, ΔH° , at 600 K.
- (d) What is the effect on $[H_2O_2]$ if the system is subjected to the following changes:
 - (i) The volume of the container is decreased
 - (ii) The temperature is increased
 - (iii) A solid catalyst is added at constant temperature and volume.
- 3. The equilibrium constant, K_p , for the reaction below is 11.5 at 600 K based on a standard state of 1×10^5 Pa.

$$PCl_5(g)$$
 \longrightarrow $PCl_3(g) + Cl_2(g)$

2.450 g of PCl₅ is placed in an evacuated 500 mL bulb, which is heated to 600 K.

- (a) What would be the initial pressure of PCl₅(g) before it dissociates?
- (b) What is the partial pressure of $PCl_5(g)$ at equilibrium?
- (c) What is the total pressure in the bulb at equilibrium?
- (d) What is the degree of dissociation of $PCl_5(g)$ at equilibrium?

Hint for part (b) As K_p is not very small, you *cannot* assume that the amount of product formed is small compared to the amount of starting material. You will need to solve the quadratic formula.